Prospects of Sea Anemone Peptides for Pharmacology

Margarita Monastyrnaya *

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022, Vladivostok, Russia.

Emma Kozlovskaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022, Vladivostok, Russia.

*Author to whom correspondence should be addressed.


It has been found that the genes of a number of protein components of sea anemone venoms underwent significant diversification in the course of evolution. The elucidation of the molecular mechanisms of sea anemone peptides interactions with targets let investigators in the last decade actively study the molecular organization and the functioning mechanisms of cytoplasmic membranes, the various types and subtypes of ion channels/receptors involved in the processes of perception, processing, intra- and intercellular signal transduction, both in a body physiological and pathological state. A short characteristic of the structure and functional activity of several classes of sea anemone peptide components, which have pronounced pharmacological potential, is presented in this mini-review.

Keywords: Coelenterates, sea anemone, biologically active peptides and polypeptides, protein toxins, molecular organization

How to Cite

Monastyrnaya, Margarita, and Emma Kozlovskaya. 2024. “Prospects of Sea Anemone Peptides for Pharmacology”. International Journal of Biochemistry Research & Review 33 (6):52-59.


Download data is not yet available.


Prentis PJ, Pavasovic A, Norton RS. Sea Anemones: Quiet Achievers in the Field of Peptide Toxins // Toxins 2018;10(1):36. Available: 10.3390/toxins10010036

Liao Q, Feng Y, Yang B, Lee SM-Y. Cnidarian peptide neurotoxins: A new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discovery Today. 2019;24:189–197.

Available: 10.1016/j.drudis.2018.08.011.

Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski MA new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. Embo J. 2004;23:1516–1525.

Available: 10.1038/sj.emboj.7600177.

Kalina R, Gladkikh I, Dmitrenok P, Chernikov O, Koshelev S, Kvetkina A, Kozlov S, Kozlovskaya E, Monastyrnaya M. New APETx-like peptides from sea anemone Heteractis crispa modulate ASIC1a channels. Peptides. 2018;104:41–49.

Available: 10.1016/j.peptides.2018.04.013.

Kalina RS, Koshelev SG, Zelepuga EA, Kim NY, Kozlov SA, Kozlovskaya EP, Monastyrnaya MM, Gladkikh IN. APETx-like peptides from the sea anemone Heteractis crispa, diverse in their effect on ASIC1a and ASIC3 ion channels. Toxins. 2020;12(266):1–20. Available: 10.3390/toxins12040266.

Leychenko E, Isaeva M, Tkacheva E, Zelepuga E, Kvetkina A, Gusev K, Monastyrnaya M, Kozlovskaya E. Multigene family of pore-forming toxins from sea anemone Heteractis crispa. Mar. Drugs. 2018;16(183):1−18.


Isaeva MP, Chausova VE, Zelepuga EA, Guzev KV, Tabakmakher VM, Monastyrnaya MM, Kozlovskaya EP. A new multigene superfamily of Kunitz-type protease inhibitors from sea anemone Heteractis crispa. Peptides. 2012;34:88–97.

Available: 10.1016/j.peptides.2011.09.022.

Padma KR, Josthna P. Role of Adrenomedullin in Trophoblast Invasion. Ann. Res. Rev. Biol. 2018 23(5):1-8.


[Accessed on:2024 Jun. 2]

Prasad BD, Sahni S, Ranjan T, Kumari D. Antimicrobial Proteins: Key Components of Innate Immunity. Curr. J. Appl. Sci. Technol. 2019;36(3):1-7. Available:

[Accessed on: 2024 Jun. 2]

Wysocki VH, Resing KA, Zhang Q, Cheng G. Mass spectrometry of peptides and proteins. Methods. 2005;35(3):211-22.

Monastyrnaya MM, Kalina RS, Kozlovskaya EP. The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation. Toxins. 2023;15 (8):1−38. Available: 10.3390/toxins15010008.

Monastyrnaya M, Leychenko E, Issaeva M., Likhatskaya G, Zelepuga E, Kostina E, Trifonov E, Nurminski E, Kozlovskaya E. Actinoporins from the sea anemones, tropical Radianthus macrodactylus and northern Oulactis orientalis: Comparative analysis of structure-function relationships. Toxicon. 2010;56:1299–1314.

Available: 10.1016/j.toxicon.2010.07.011

Gladkikh I, Monastyrnaya M, Leychenko E, Zelepuga E, Chausova V, Isaeva M, Anastyuk S, Andreev Y, Peigneur S, Tytgat J, Kozlovskaya E. Atypical reactive center Kunitz-type inhibitor from the sea anemone Heteractis crispa. Mar. Drugs 2012;10:1545–1565. Available: 10.3390/md10071545.

Gladkikh I, Monastyrnaya M, Zelepuga E, Sintsova O, Tabakmakher V, Gnedenko O, Ivanov A, Hua K-F, Kozlovskaya E. New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractis crispa. Mar. Drugs. 2015;13 :6038–6063. Available:

Sintsova ОV, Monastyrnaya ММ, Pislyagin EA, Menchinskaya ES, Leychenko ЕV, Aminin DL, Kozlovskaya EP. Anti-inflammatory activity of the polypeptide of the sea Anemone, Heteractis crispa. Bioorg. Chem. 2015;41:590–596

Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N, Shevchenko L, Peigneur S, Tytgat J, Kozlovskaya E, Leychenko E. Magnificamide, a -Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian -Amylases. Mar. Drugs 2019;17:542 [1−15].


Schweitz H, Bruhn T, Guillemare E, Moinier D, Lancelin JM, Béress L, Lazdunski M. Two different classes of sea anemone toxins for voltage-sensitive K+ channels. J. Biol. Chem. 1995:270:25121–25126. Available:

Gladkikh I, Peigneur S, Sintsova O, Pinheiro-Junior EL, Klimovich A, Menshov A., Kalinovsky A., Isaeva M., Monastyrnaya M., Kozlovskaya E., Tytgat J., Leychenko E. Kunitz-type peptides from the sea anemone Heteractis crispa demonstrate potassium channel blocking and anti-inflammatory activities. Biomedicines. 2020;8(473)1–17.

Available: 10.3390/biomedicines8110473.

Fedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L, Leychenko E, Kozlovskaya E, Jin JO, Kwak J.Y., Bode A.M., Dong Z., Stonik V. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon 2010;55:811–817. Available:

Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP, Grishin EV. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J. Biol. Chem. 2008;283:23914–23921. Available: 10.1074/jbc.M800776200

Monastyrnaya M, Peigneur S, Zelepuga E, Sintsova O, Gladkikh I, Leychenko E, Isaeva M, Tytgat J, Kozlovskaya E. Kunitz-type peptide HCRG21 from the sea anemone Heteractis crispa is a full peptide antagonist of the TRPV1 receptor. Mar. Drugs 2016;14(229):1–20. Available:

Sintsova OV, Chausova VE, Gladkikh IN, Isaeva MP, Tabakmakher VM, Leychenko EV, Monastyrnaya MM, Pislyagin EA, Menchinskaya ES, Peigneur S, Tytgat J, Kozlovskaya EP. New antihistamine Kunitz-type polypeptides of the sea anemones, Heteractis crispa and Stichodactyla mertensii. FEBS Journal. 2015;282(suppl.1):140–141.

Sintsova O, Gladkikh I, Chausova V, Monastyrnaya M, Anastyuk S, Chernikov O, Yurchenko E, Aminin D, Isaeva M, Leychenko E, Kozlovskaya E. Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor. Journal of Proteomics. 2018;173: 12–21. Available:

Robinson SD, Undheim EAB, Ueberheide B, King GF. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteomics. 2017;14:931–939.

Available: 10.1080/14789450.2017.1377613.

Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem. 2018;26:2738–2758. Available:

Norton RS, Pennington MW, Wulff H. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr. Med. Chem. 2004;11:3041–3052.


Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen C-Yin, Gutman GA, Chandy KG. Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases. Mol. Pharmacol. 2005:67:1369–1381. Available: 10.1124/mol.104.008193

Gladkikh IN, Klimovich AA, Kalina RS, Kozhevnikova YV, Khasanov TA, Osmakov DI, Koshelev SG, Monastyrnaya MM, Andreev YA, Leychenko EV, Kozlov SA. Anxiolytic, analgesic and anti inflammatory effects of peptides Hmg 1b-2 and Hmg 1b-4 from the sea anemone Heteractis magnifica. Toxins. 2023; 15(341):1–20. Available:

Kalina RS, Kasheverov IE, Koshelev SG, Sintsova OV, Peigneur S, Lopes Pinheiro-Junior E., Popov RS, Chausova VE, Monastyrnaya MM, Dmitrenok PS, Isaeva MP, Tytgat J, Kozlov SA, Kozlovskaya EP, Leychenko E.V., Gladkikh IN. Nicotinic Acetylcholine Receptors Are Novel Targets of APETx-like Toxins from the Sea Anemone Heteractis magnifica. Toxins 2022; 14:697. Available:

Kvetkina A, Malyarenko O, Pavlenko A, Dyshlovoy S, von Amsberg G, Ermakova S, Leychenko E. Sea Anemone Heteractis crispa Actinoporin Demonstrates In Vitro Anticancer Activities and Prevents HT-29 Colorectal Cancer Cell Migration. Molecules. 2020;25(5979): 1–13. Available:

Monastyrnaya MM, Agafonova IG, Tabakmakher VM, Kozlovskaya EP. The sea anemone pore forming toxins (PFTs): from mechanism of action to perspectives in pharmacology as antitumor agents. EC Pharmacology and Toxicology. 2023;11: 20–26. Available:

Tejuca M, Anderluh G, Dalla Serra M. Sea anemone cytolysins as toxic components of immunotoxins. Toxicon. 2009;54:1206–1214. Available:

Sintsova O, Gladkikh I, Monastyrnaya M, Tabakmakher V, Yurchenko E, Menchinskaya E, Pislyagin E, Andreev Y, Kozlov S, Peigneur S, Tytgat J, Aminin D, Kozlovskaya E, Leychenko E. Sea Anemone Kunitz-Type Peptides Demonstrate Neuroprotective Activity in the 6-Hydroxydopamine Induced Neurotoxicity Model. Biomedicines. 2021; 9:283. Available:

Sintsova O, Gladkikh I, Klimovich A, Palikova Y, Palikov V, Styshova O, Monastyrnaya M, Dyachenko I., Kozlov S., Leychenko E. TRPV1 Blocker HCRG21 Suppresses TNF-α Production and Prevents the Development of Edema and Hypersensitivity in Carrageenan Induced Acute Local Inflammation. Biomedicines. 2021;9:716. Available: