Study of the Substitution of Marine Animal Oils in Maggot Flour by Vegetable Oils for the Growth and Larval Survival of African Catfish, Heterobranchus longifilis Valencienne, 1840 in Aquarium
International Journal of Biochemistry Research & Review, Volume 32, Issue 2,
Page 10-20
DOI:
10.9734/ijbcrr/2023/v32i2798
Abstract
This study showed clearly the effect of adding palm oil to the diet of farmed fish to replace marine animal oils. For this purpose, four foods based on maggot flour at 35% protein with the incorporation of palm oil, at different levels at 0, 2, 5 and 10% were tested in the to assess their impact on the improved growth performance, food utilization, survival rate and biochemical composition of Heterobranchus longifilis larvae
Four experimental diets were formulated based on the maggot meal as the main protein source. These diets were formulated at 35 % protein levels with maggot meal and maize flour as the major ingredients containing different concentrations of palm oil levels at 0, 2, 5, and 10 %. This study was carried out in the reproduction laboratory, at Oceanological Research Center, Abidjan, Côte d’Ivoire, between the periods of September to November 2022.
The diets were offered to the larvae (average initial weight 0.004 ± 0.001 g) three times a day ad libitum for 49 days. At the end of rearing, the results showed that the different experimental foods distributed did not influence the quality of the rearing environment.
The best growth was obtained with the larvae subjected to diet containing 2% palm oil with a final average weight of 3.21 g and a conversion index of 1.63. Beyond this rate, larval growth decreases. Survival rates vary from 70 to 73 %. The conversion ratios are not significantly different and ranged between 1.63 and 2.3. On the biochemical larvae submitted to diet containing 10 % of palm oil had body lipid content (2 %) and high ash rich. As against a gain of protein is observed with larvae submitted to diets containing 2 % palm oil reflects an effect of protein.
From the present results, diet containing 2 % crude palm oil is considered optimal for Heterobranchus longifilis larvae.
- Substitution
- marine
- palm oil
- Heterobranchus longifilis
- larvae
- growth
- body composition
How to Cite
References
FAO. Summary of the state of world fisheries and aquaculture, food and organisation,Rome, Italy. 2020;32.
Leduc A. Développement d’hydrolysats destinés à la formulation d’aliments pour l’aquaculture: normalisation structurale et optimisation fonctionnelle. Thèse de de Doctorat. Université de Caen Normandie. 2018:289.
Hem S, Legendre M, Trebaol L, Cissé A, Otemé Z and Moreau Y. L’aquaculture lagunaire. In : Dufour P, JR. Durand and SG. Zabi (Eds). Environnement et ressources aquatiques de Côte d’Ivoire. Les milieux lagunaires: (tome 2). Paris, France: ORSTOM. 1994:455-505.
Atsé BC, Konan KJ, Alla YL, Pangni K. Effect of rearing density and feeding regimes on growth and survival of African Catfish, Heterobranchus longifilis, Valencienne, 1840 larvae enclosed reticulating aquaculture system. Journal of Applied Aquaculture. 2009 ;21:183-195.
Yao AH. Influence de deux types d’aliment formulés (Artemia salina, Linaeus 1758), farine de cervelle de bovin, Bos tuerus indius, (Linnaeus 1758) sur le milieu d’élevage, la croissance et la composition biochimique des larves de Heterobranchus longifilis (Valenciennes, 1840). Mémoire de DEA en hydrobiologie à l’Université Félix Houphouët Boigny Abidjan. 2012:65.
Ossey YB, Koumi AR., Koffi KM, Atsé BC, Kouamé PL. Utilisation du soja, de la cervelle bovine et de l’asticot comme sources de protéines alimentaires chez les larves de Heterobranchus longifilis (Valenciennes, 1840). Journal of Animal and Plant Sciences. 2012;15 (1):2099-2108.
Tacon AGJ. Salmon aquaculture dialogue: status of information on salmon aquaculture feed and the environment. International Aquafeed. 2005;8:22-37.
Ochang NS, Fagbenro AO, Adebayor TO. Growth performance, body composition, haematology and product quality of the african catfish (Clarias gariepinus) fed diets with palm oil. Pakistan Journal Nutrition. 2007;6(5):452-459.
Aderolu AZ, Akinremi OA. Dietary effect of coconut oil and peanut oil in improving biochemical characteristics of Clarias gariepinus Juvenile. Turkish Journal of Fish Aquaculture Sciences. 2009;9:105-110
Van Hoestenberghe S, Goddeeris B, Roelants I. et Vermeulen D. Remplacement total de l'huile de poisson par des huiles végétales dans l'alimentation des juvéniles Jade Perch Scortum barcoo élevés dans des systèmes d'aquaculture en recirculation. Journal des sciences et technologies agricoles. B. 2013 :3(5):385-398.
Otchoumou AK, Blé CM, Alla YL, Corraze G, Niamke SL, Diopoh JK. Effect of crude palm oil incorporation on growth, survival, feed efficiency, and body composition of Heterobranchus longifilis fingerlings. Journal of Applied Aquaculture. 2014;26(2):169-178.
Anvo MPM, Sissao R, Aboua BRD, Zoungrana-Kaboré CY, Otchoumou AK, Kouamelan EP, Toguyéni A. Preliminary use of cashew kernel oil in Clarias gariepinus fingerlings diet: comparison with fish oil and palm oil. International Aquatic Research. 2017;9:129-139.
Ble CM, Etchian OA, Otchoumou AK, Yapi JN and Yao LA ; Effects of dietary palm oil on the wole body mineral composition of African Catfish, Heterobranchus longifilis (Teleostei, Clariidae). Palm oil. 2018:171-81.
Lim PK, Boey PL, Ng WK. Dietary palm oil level affects growth performance protein retention and tissue vitamin E concentration of African catfish, Clarias gariepinus, Aquaculture. 2001;202:81-87.
Téguia AM, Nguemfo EL. Essai comparé de production d’asticot dans les fientes de poule et dans la bouse de vache. Tropicultura. 2004;22:84-87.
Legendre M. Seasonal changes in sexual maturity and fecundity, and HCG-induced breading of catfish, H. longifilis Valenciennes (Clariidae) reared in Ebrié lagoon (Ivory Coast). Aquaculture. 1986;55:201-213.
AOAC. Officialmethods of analysis. Association of analytical chemists, Arlington, Virginia, USA; 1995.
Luquet P, Moreau Y. Energy-protein management by some warm water fin fishes. Actes du Collogue 9, AQUACOP, IFREMER, Paris, France. 1989 ;4.
Kaushik SJ, Coves D, Dutto G, Blanc D. Almost total replacement of fishmeal by plant protein sources in the diets for Europea seabass (Dicentrarchus labrax). Aquaculture. 2004;230(1-4): 391-404.
Tarazona JV, Munoz MJ. Water quality in salmonid culture. Reviews in Fisheries Sciences. 1995:3:109-139.
Ross LG. Environment physiology and energetic, In: Bevereridge MCM, Mc Andrew BJ. (Eds). Tilapias: Biology and Exploitation. Dordrecht, Netherlands: Kluwer Academic Publisher, Fish and Fisheries Series. 2000;25:89-128.
Sotolu OA. Feed utilization and biochemical characteristics of Clarias gariepinus (Burchell, 1822) fingerlings fed diets containing fish oil and vegetal oils as total replacements. World Journal of Fish Marine Sciences. 2010;2(2):93-98.
Otchoumou KA. Contribution des céréales et des huiles végétales à l’apport énergétique alimentaire des juvéniles du silure Heterobranchus longifilis, Valenciennes, 1840 : influence sur la croissance et le bilan nutritionnel; Thèse de Doctorat .Université Félix Houphouët Boigny Abidjan, Côte d’Ivoire. 2012:141.
Du ZY, Liu YJ, Tian LX, Wang JT, Wang Y, Liang GY. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition. 2005;11:139-46.
Babalola TO, Adebayo MA. Effect of dietary lipid level on growth performance and feed utilization by Heterobranchus longifilis fingerlings. Journal of Fisheries International. 2007;2(1): 60-64
Otchoumou KA, Blé MC, Etchian AO, Alla YL, Niamké LS, Diopoh KJ. Effects of increasing dietary protein levels on growth feed utilization and body composition of Heterobranchus longifilis (Valenciennes, 1840) fingerlings. African Journal of Biotechnology. 2012;11(2):524-529.
Spinelli J, Mahnken C, Steinberg M. Alternative sources of protein for fish meal in salmonid diets. In: Halver, J. E., Tiews, K. (Eds): Finfish nutrition and fish feed technology. 1979;2:132-143.
Ajani EK, Nwanna LC, Musa BO. Replacement of fishmeal with maggot meal in the diets of nile tilapia, Oreochomis niloticus. World Aquaculture. 2004;35:52-54.
Turchini GM, Torstensen BE. Ng WK. Fish oil replacement in fisheries nutrition. Reviews in Aquacaculture. 2009;1:10-57
Morissens PM, Sanchez F, Hem S. Approche de nouveaux modèles d’exploitation piscicole adaptés au contexte rural ivoirien. International Symposium on Tilapia in Aquaculture ISTA III Abidjan. 1991:11-66:14.
Orire AM, Ebonyi GI, et Daniyan SY. Effets du remplacement de l'huile végétale par de l'huile de Jatropha curcas détoxifiée dans l'alimentation des alevins de Clarias gariepinus (Burchell, 1822). Repository futminna. Edu.ng ; 2018.
Atsé BC, Koffi KM, Konan KJ, N’dri KM. Effets du rationnement et de la fréquence de tri du silure Heterobranchus longifilis (Valenciennes, 1840). Journal of Applied Biosciences. 2012;59:4358– 4365.
Abass FE. Effect of dietary oil sources and levels on growth, feed utilization and whole body chemical composition of common cap, Cyprinus carpio L Fingerlings. Journal of Fish. Aquaculture Sciences. 2007;2:140-148.
Yang G, Jiang W, Chen Y, Hu Y, Zhou Q, Peng M, Kumar V. Effect of oil source on growth performance, antioxidant capacity, fatty acid composition and fillet quality of juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition. 2020;26(4):1186-1197.
Effiong MU, Yaro CA. Fatty acid composition of fillets of african catfish, Clarias gariepinus Fed with various oil-based diets. Aquaculture Studies. 2020 ;20(1):29-35.
Corraze G, Kaushik SJ. Alimentation lipidique et remplacement des huiles de poisons par des huiles végétales en pisciculture. Cahier Agricole. 2009;18(2-3) :112-118.
Wang Y, Liu YJ, Tian LX, Du ZY, Wang JT, Wang S, Xiao WP. Effects of dietary carbohydrate level on growth and body composition of juvenile tilapia, Oreochromis niloticus aureus .Aquaculture Resources. 2005;36:1408-1413.
-
Abstract View: 33 times
PDF Download: 37 times