Chemical and Biological Studies on the Goldenberry (Physalis peruviana L.) on Hyperglycemic Rats
International Journal of Biochemistry Research & Review,
Page 32-39
DOI:
10.9734/ijbcrr/2021/v30i230253
Abstract
The aim this investigate was to see if the medicine goldenberry fruits (Physalis peruviana L.) could help lower blood sugar, cholesterol, and triglycerides. The results of the chemical composition of goldenberry fruits were found to be a high source of antioxidants and which contain a high level of hypoglycemic and hypocholesterolemic such as phenolic compounds, ascorbic acid and ꞵ-carotenoid. The results showed that dried goldenberry fruits powder could be added to replace up to 5 and 10 % of hyperglycemic -diet respectively. Experimental hyperglycemic rats were fed for six weeks on diet contain dried goldenberry at extent 5% or 10% except normal control (G1) was fed on basal diet. Hyperglycemic rats fed on diets substituted in a part with 5% and10 % dried goldenberry the results showed that supplementing the hyperglycemic-producing diets with the additive goldenberry had significant decrease in serum glucose, lipid profile (cholesterols, triglyceride, low density lipoprotein LDL and very low density lipoprotein vLDL-cholesterol). Meanwhile, high density lipoprotein HDL cholesterol increased with all treatments, significant reduction in alanine aminotransferase ALT, aspartate aminotransferase AST, alkaline phosphatase ALP, and total bilirubin values, in respect to positive control were also observed.
Keywords:
- Goldenberry
- antioxidants
- rats
- hyperglycemic.
How to Cite
References
Erkaya T, Dağdemir E, Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res Int. 2012; 45: 331–335
Tapia M, Fries A. Guía de campo de los cultivos andinos. FAO y ANPE, Lim, 2007.
4.Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Res Int. 2011;44:1733–1740
Zhang H, Cao CM, Gallagher R J, Day V W, Kindscher K. Withanolides from Physalis coztomat l, Phytochem. 2015; 109:147-153.
Ramadan MF, Hassan NA, Elsanhoty RM and Sitohy MZ. Goldenberry (Physalis peruviana) juice rich in healthbeneficial compounds suppresses high-cholesterol dietinduced hypercholesterolemia in rats, J Food Biochem. 2013;37(6):708-722.
Puente LA, Pinto-Muñoz CA, Castro ES and Cortés M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review, Food Res In. 2011;44(7):1733-1740.
Ramadan M F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview, Food Res Int. 2011;44(7): 1830-1836.
Olivares-Tenorio ML, Verkerk R, van Boekel MAJS, Dekker M. Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). J Funct Foods. 2017;32:46–57
Rey DP, Ospina LF, Aragón DM. Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases, Revista Colombiana de Ciencias Químico Farmacéuticas. 2015; 44(1):72-89.
Bernal CA, Aragón M, Baena Y, Dry powder formulation from fruits of Physalis peruviana L. standardized extract with hypoglycemic activity, Powder Technol. 2016;301:839-847.
Pinto MDS, Ranilla LG, Apostolidis E, Lajolo FM, Genovese MI. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using in vitro models, J Med Food. 2009;12(2): 278-291.
Sathyadevi M, Suchithra ER, Subramanian S. Physalis peruviana Linn. fruit extract improves insulin sensitivity and ameliorates hyperglycemia in high-fat diet low dose STZ induced type 2 diabetic rats, J Pharm Res. 2014;8(4):625- 632.
Ramadan MF. Physalis peruviana pomace suppresses high cholesterol diet-induced hypercholesterolemia in rats, Grasas Y Aceites. 2012; 63(4):411-422.
AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. 18th Ed., Published by the Association of Official Analytical Chemists. Arlington, Virginia, 2220 USA; 2010.
Tadrus MD. Chemical and biological studies on some baby foods. M.Sc. Thesis. Fac. of Agric. Cairo Univ. Cairo, Egypt; 1989.
AOAC. Association of Official Analytical Chemists Official Methods of Analysis of the Association of Offcial Analytical Chemists.18th edition. Gaithersburg, USA; 2012.
Pyka, A. and Sliwiok, J. Chromatographic separation of tocopherols. Journal of Chromatography A. 2001;935(1-2):71-76.
Romeu-Nadal M, Morera-Pons S, Castellote AI, Lopez-Sabater MC. Rapid high-performance liquid chromatographic method for Vitamin C determination in human milk versus an enzymatic method. Journal of Chromatography B. 2006;830(1):41- 46.
Goupy P, Hugues Boivin P, Amiot M. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food and Agri. 1999, 79:1625-1634.
Mattila P, Astola J, Kumpulainen. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J. Agric. Food Chem. 2000;48: 5834-5841.
Lee R, Nieman D. Nutrition Assess- ment.2ndedition. Mosby, Missouri, USA, 1996:591 – 594.
Eskander EF, Jun HW. Hypoglycemic and Hyperinsulinemic effect on some Egyptian herbs used for the treatment of diabetic mellitus (type П) in rats. Egypt. J. Pharma Sci. 1999; 36(1-6):331-342.
Esmerino AL. Blood glucose determination in normal and alloxan-diabetic rats after administration of local anesthetics containing vaso constrictors Braz Dent J. 1998;(1): 33-37. ISSN 0103 -6440.
Malhotra VK. Practical biochemistry for students. Jaypee Bros. Medical Publica- tions; 2003.
Trinder P. Glucose enzymatic colorimetric method. J. Clin. Biochem. 1969;6:24.7
Allain CC. Cholesterol enzymatic colorimetric method. J. of Clinical chemistry. 1974;20(10):1282-1286.
Fassati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. J. Clinical Chemist. 1982;28(10):2077-2080.
Lee R, Nieman D. Nutrition Assessment. 2nd edition. Mosby, Missouri, USA. 1996; 591 – 594.
Henry RJ. Clinical Chemist: Principles and Techniqus, 2nd Edition, Hagerstown (MD), Harcer, Row. 1974;882.
Varley H, Gewenlock A, Bell M. Practical Clinical Biochemist 5th Ed. In: William, H. Medical Books. Ltd, London. 1980;741- 897.
Rosalki SB, Foo AY. Two new methods for separating and quantifying bone and liver alkaline phosphatase iso enzymes in plasma. Clinical Chemistry. 1984;30(7): 1182-1186.
Stiehl A. Hyper bilirubinemia in liver disease. Forts chritte Medicine. 1982; 100(18):842-845.
Osorio D, Roldan J. Returning to the field: uchuva manual. Bogota: Group Latino LTDA; 2003.
Anjani PP, Damayanthi E, Rimbawan R, Handharyani E. Potential of okra (Abelmoschus esculentus L.) extract to reduce blood glucose and malondialdehyde (MDA) liver in strepto- zotocin induced diabetic rats. J Gizi Pangan. 2018;13(1):47–54
Al-numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2015;20(5): 198–209.
Hassan AI, Ghoneim MAM. 2013. A possible inhibitory effect of physalis (Physalis pubescens L.) on diabetes in male rats. World Appl Sci J. 2013; 21(5):z681–688.
Abd El-Gwad AE, Abou Raya MA, Abdelrasoul EA, Khalil MM. Biological Effects of Dried and Extracted Goldenberry on Diabetic Rats. J. Food and Dairy Sci., Mansoura Univ. 2018;9 (12): 425 – 430.
Sathyadevi M, Suchithra ER, Subramanian S. Physalis peruviana Linn. Fruit extract improves insulin sensitivity and ameliorates hyperglycemia in high-fat diet low dose STZ-induced type 2 diabetic rats. J Pharm Res. 2014;8(4):625-32.
-
Abstract View: 393 times
PDF Download: 243 times