The Potential Use of Blood, Cerebrospinal Fluid, Saliva and Urine as Biological Samples for the Diagnosis of Alzheimer’s Disease

Main Article Content

Adnan Awn Algarni
Abdulhadi I. Bima
Ayman Z. Elsamanoudy


Background and Aim: Alzheimer’s disease (AD) is the most common cause of dementia. 80% of all dementia is due to AD. Diagnosis of AD is a difficult task, as the accurate diagnosis requires post-mortem examination of brain autopsy samples. Diagnosis of AD in living individuals can be aided by the establishment of the clinical criteria, positron emission tomography (PET) examination, and biomarkers. The study of biomarkers for diagnosis of AD could help clinicians to evaluate individuals at risk, and confirm the occurrence as well as the progression of AD in a non-invasive manner. High sensitivity and high specificity of the used markers are mandatory criteria for these biomarkers to trusted for AD diagnosis and prognosis. So, this review article aims to focus on the potential use of body fluids as a source of the biomarkers that are used for investigating patients with AD.

Methodology: In the current study, we reviewed scientific articles that discuss AD pathogenesis and diagnosis of Google Scholar database, Pubmed, Pubmed Central, Cochrane Database of Systematic Reviews (CDSR), MEDLINE, and MedlinePlus with no time limitation. Moreover, we discussed the use of recently discovered biomarkers that are detected in blood, CSF, saliva, and urine.

Conclusion: In the current review, it could be concluded that in addition to the blood and cerebrospinal fluid as common biological samples for the diagnosis of AD, saliva and urine are useful potential biological samples. Moreover, both are noninvasive samples that give them priority to be used.

Alzheimer’s disease, biomarkers, biological samples, blood, CSF, saliva, urine

Article Details

How to Cite
Algarni, A. A., Bima, A. I., & Elsamanoudy, A. Z. (2020). The Potential Use of Blood, Cerebrospinal Fluid, Saliva and Urine as Biological Samples for the Diagnosis of Alzheimer’s Disease. International Journal of Biochemistry Research & Review, 29(8), 26-41.
Review Article


Crous-Bou M, Minguillón C, Gramunt N, Molinuevo J. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer's Research & Therapy. 2017;9(1):71.

DOI 10.1186/s13195-017-0297-z

Takizawa C, Thompson PL, van Walsem A, Faure C, Maier WC. Epidemiological and economic burden of Alzheimer's disease: a systematic literature review of data across Europe and the United States of America. J Alzheimers Dis. 2015;43(4):1271-1284.


Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist. 2012;18(6):356-63. DOI: 10.1097/NRL.0b013e31826a998d.

DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener. 2019;14(1):32.

DOI: 10.1186/s13024-019-0333-5. PMID: 31375134; PMCID: PMC6679484.

Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer's disease. Nat Rev Dis Primers. 2015;1:15056.


Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev. 2016;68:547-562. DOI:10.1016/j.neubiorev.2016.06.014

Ryan NS, Rossor MN, Fox NC. Alzheimer's disease in the 100 years since Alzheimer's death. Brain. 2015;138(Pt 12):3816-3821.


Sun L, Ban T, Liu C, Chen Q, Wang X, Yan M, Hu X, Su X, Bao Y, Sun L, Zhao L, Pei S, Jiang X, Zong D, Ai J. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134(6):1139-1151. DOI:10.1111/jnc.13212

Chen JJ, Zhao B, Zhao J, Li S. Potential roles of Exosomal MicroRNAs as diagnostic biomarkers and therapeutic application in alzheimer's disease. Neural Plast. 2017;2017:7027380.

DOI: 10.1155/2017/7027380.

Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S. ExoCarta: A web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688-692. DOI: 10.1016/j.jmb.2015.09.019.

Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A, Wolk DA, McCluskey LF, Elman LB, Trojanowski JQ, Umansky SR. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimers Res Ther. 2017;9(1):89.

DOI: 10.1186/s13195-017-0316-0.

Mattsson N, Insel P, Nosheny R, Zetterberg H, Trojanowski JQ, Shaw LM, Tosun D, Weiner M. Alzheimer's disease neuroimaging initiative. CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders. Transl Psychiatry. 2013;3(8):e293.

DOI: 10.1038/tp.2013.69. PMID: 23962923; PMCID: PMC3756294.

Rubinsztein DC. RIPK1 promotes inflammation and β-amyloid accumulation in Alzheimer's disease. Proc Natl Acad Sci U S A. 2017;114(41):10813-10814. DOI:10.1073/pnas.1715241114. Epub 2017 Oct 2.

Cirrito J, Yamada K, Finn M, Sloviter R, Bales K, May P, Schoepp D, Paul S, Mennerick S, Holtzman D. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron. 2005;48(6):913-922.


Zetterberg H. Review: Tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol. 2017;43(3):194-199. DOI:10.1111/nan.12378

Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer's disease. Neuron. 2013;80(6):1347-58.

DOI: 10.1016/j.neuron.2013.12.003.

Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K. Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease. Brain Res. 2010;1362:13-22. DOI:10.1016/j.brainres.2010.09.073

Blennow K. A review of fluid biomarkers for alzheimer's disease: moving from CSF to blood. Neurol Ther. 2017;6(Suppl 1):15-24.

DOI: 10.1007/s40120-017-0073-9.

Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K. Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med. 2013;368(2):107-16.

DOI: 10.1056/NEJMoa1211103.

Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, Pocock JM. Microglial genes regulating neuroinflammation in the progression of alzheimer's disease. Curr Opin Neurobiol. 2016;36:74-81. DOI:10.1016/j.conb.2015.10.004.

Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med. 2017;23(6):512-533. DOI:10.1016/j.molmed.2017.03.008.

Brendel M, Kleinberger G, Probst F, Jaworska A, Overhoff F, Blume T, Albert NL, Carlsen J, Lindner S, Gildehaus FJ, Ozmen L, Suárez-Calvet M, Bartenstein P, Baumann K, Ewers M, Herms J, Haass C, Rominger A. Increase of TREM2 during Aging of an Alzheimer's Disease Mouse Model Is Paralleled by Microglial Activation and Amyloidosis. Front Aging Neurosci. 2017;9:8.

DOI: 10.3389/fnagi.2017.00008.

Nordengen K, Kirsebom BE, Henjum K, Selnes P, Gísladóttir B, Wettergreen M, Torsetnes SB, Grøntvedt GR, Waterloo KK, Aarsland D, Nilsson LNG, Fladby T. Glial activation and inflammation along the Alzheimer's disease continuum. J Neuroinflammation. 2019;16(1):46.

DOI: 10.1186/s12974-019-1399-2.

James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA. TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia. Brain. 2016;139(11):2983-2993.

DOI: 10.1093/brain/aww224.

Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009;66(2):200-8.

DOI: 10.1002/ana.21706.

Mollenhauer B, Esselmann H, Trenkwalder C, Schulz-Schaeffer W, Kretzschmar H, Otto M, Wiltfang J, Bibl M. CSF amyloid-β peptides in neuropathologically diagnosed dementia with Lewy bodies and Alzheimer's disease. J Alzheimers Dis. 2011;24(2):383-391.


Lanoiselée HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S, Richard AC, Pasquier F, Rollin-Sillaire A, Martinaud O, Quillard-Muraine M, de la Sayette V, Boutoleau-Bretonniere C, Etcharry-Bouyx F, Chauviré V, Sarazin M, le Ber I, Epelbaum S, Jonveaux T, Rouaud O, Ceccaldi M, Félician O, Godefroy O, Formaglio M, Croisile B, Auriacombe S, Chamard L, Vincent JL, Sauvée M, Marelli-Tosi C, Gabelle A, Ozsancak C, Pariente J, Paquet C, Hannequin D, Campion D. collaborators of the CNR-MAJ project. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017;14(3):e1002270.

DOI: 10.1371/journal.pmed.1002270.

Schupf N, Patel B, Silverman W, Zigman W, Zhong N, Tycko B, Mehta P,Mayeux R. Elevated plasma amyloid beta-peptide 1-42 and onset of dementia in adults with Down syndrome. Neurosci Lett. 2001;301(3):199-203.


Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88-93.

DOI: 10.4161/cam.3.1.7402.

Irizarry MC. Biomarkers of alzheimer disease in plasma. NeuroRx. 2004;(2):226-34.

DOI: 10.1602/neurorx.1.2.226.

Potter R, Patterson BW, Elbert DL, Ovod V, Kasten T, Sigurdson W, Mawuenyega K, Blazey T, Goate A, Chott R, Yarasheski KE, Holtzman DM, Morris JC, Benzinger TL, Bateman RJ. Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med. 2013;5(189):189ra77.

DOI: 10.1126/scitranslmed.3005615.

Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med. 2012;2(6):a006379.

DOI: 10.1101/cshperspect.a006379.

Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, Ovod V, Munsell LY, Mawuenyega KG, Miller-Thomas MM, Moran CJ, Cross DT 3rd, Derdeyn CP, Bateman RJ. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol. 2014;76(6):837-44.

DOI: 10.1002/ana.24270.

Bard F, Cannon C, Barbour R, Burke R, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6(8):916-919.


Yaffe K, Barrett-Connor E, Lin F, Grady D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol. 2002;59(3):378-384. DOI:10.1001/archneur.59.3.378.

Rockwood K, Kirkland S, Hogan D, MacKnight C, Merry H, Verreault R, Wolfson C, McDowell I. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol. 2002;59(2): 223-227.


Sarti C, Pantoni L, Pracucci G, Di Carlo A, Vanni P, Inzitari, Lipoprotein(a) and cognitive performances in an elderly white population: Cross-sectional and follow-up data. Stroke. 2001;32(7):1678-1683. DOI:10.1161/01.str.32.7.1678.

Diaz-Arrastia R. Homocysteine and neurologic disease. Arch Neurol. 2000;57(10):1422-1427. DOI:10.1001/archneur.57.10.1422.

Leoni V, Masterman T, Patel P, Meaney S, Diczfalusy U, Björkhem I. Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers. J Lipid Res. 2003;44(4):793-799. DOI:10.1194/jlr.M200434-JLR200.

Vega G, Weiner M, Lipton A, von Bergmann K, Lütjohann D, Moore C, Svetlik D. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol. 2003;60(4):510-515. DOI:10.1001/archneur.60.4.510.

Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer's disease. Biomed Rep. 2016 May;4(5):519-522.

DOI: 10.3892/br.2016.630.

Kumar A, Singh A, Ekavali A review on Alzheimer's disease pathophysiology and its management: An update. Pharmacol Rep. 2015;67:195–203.

DOI: 10.1016/j.pharep.2014.09.004.

Greco A, Minghetti L, Levi G. Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochem Res. 2000;25(9-10):1357-1364. DOI:10.1023/a:1007608615682.

Praticò D, Clark CM, Lee VM, Trojanowski JQ, Rokach J, FitzGerald GA. Increased 8,12-iso-iPF2alpha-VI in Alzheimer's disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol. 2000;48(5):809- 812.


Polidori MC, Mecocci P. Plasma susceptibility to free radical-induced antioxidant consumption and lipid peroxidation is increased in very old subjects with Alzheimer disease. J Alzheimers Dis. 2002;4(6):517-522. DOI:10.3233/jad-2002-4608.

Heart Protection Study Collaborative Group. MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):23-33. DOI:10.1016/S0140-6736(02)09328-5.

Kiddle SJ, Sattlecker M, Proitsi P, Simmons A, Westman E, Bazenet C, Nelson SK, Williams S, Hodges A, Johnston C, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Newhouse S, Lovestone S, Dobson RJ. Candidate blood proteome markers of Alzheimer's disease onset and progression: a systematic review and replication study. J Alzheimers Dis. 2014;38(3):515-31.

DOI: 10.3233/JAD-130380.

Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Todarello O, Pellicani V, Capurso SA, Pietrarossa G, Santamato V, Capurso A, Panza F. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta. 2006;364(1-2):91-112.

DOI: 10.1016/j.cca.2005.06.015.

Morgan AR, Touchard S, Leckey C, O'Hagan C, Nevado-Holgado AJ; NIMA Consortium, Barkhof F, Bertram L, Blin O, Bos I, Dobricic V, Engelborghs S, Frisoni G, Frölich L, Gabel S, Johannsen P, Kettunen P, Kłoszewska I, Legido-Quigley C, Lleó A, Martinez-Lage P, Mecocci P, Meersmans K, Molinuevo JL, Peyratout G, Popp J, Richardson J, Sala I, Scheltens P, Streffer J, Soininen H, Tainta-Cuezva M, Teunissen C, Tsolaki M, Vandenberghe R, Visser PJ, Vos S, Wahlund LO, Wallin A, Westwood S, Zetterberg H, Lovestone S, Morgan BP. Annex: NIMA–wellcome trust consortium for neuroimmunology of mood disorders and alzheimer's disease. Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimers Dement. 2019;15(6):776-787.

DOI: 10.1016/j.jalz.2019.03.007.

Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s disease. J Neurogastroenterol Motil. 2019;25:48–60. DOI: 10.5056/jnm18087.

Park JC, Han SH, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review. BMB Rep. 2020;53(1):10-19.

DOI: 10.5483/BMBRep.2020.53.1.309.

Triebl A, Trötzmüller M, Hartler J, Stojakovic T, Köfeler HC. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1053:72-80.

DOI: 10.1016/j.jchromb.2017.03.027.

Wilkins JM, Trushina E. Application of metabolomics in alzheimer's disease. Front Neurol. 2018;8:719.

DOI: 10.3389/fneur.2017.00719.

Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS. The future of NMR-based metabolomics. Curr Opin Biotechnol. 2017;43:34-40.

DOI: 10.1016/j.copbio.2016.08.001.

Burke SL, Hu T, Spadola CE, Burgess A, Li T, Cadet T. Treatment of sleep disturbance may reduce the risk of future probable alzheimer's disease. J Aging Health. 2019;31(2):322-342.

DOI: 10.1177/0898264318795567.

Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen SG, Matson W, Oki NO, Motsinger-Reif AA, Churchill E, Lei Z, Appleby D, Kling MA, Trojanowski JQ, Doraiswamy PM, Arnold SE. Pharmacometabolomics research network. Alterations in metabolic pathways and networks in Alzheimer's disease. Transl Psychiatry. 2013;3(4):e244.

DOI: 10.1038/tp.2013.18.

Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW, John-Williams LS, Mahmoudian Dehkordi S, Rotroff DM, Jack JR, Motsinger-Reif A, Risacher SL, Blach C, Lucas JE, Massaro T, Louie G, Zhu H, Dallmann G, Klavins K, Koal T, Kim S, Nho K, Shen L, Casanova R, Varma S, Legido-Quigley C, Moseley MA, Zhu K, Henrion MYR, van der Lee SJ, Harms AC, Demirkan A, Hankemeier T, van Duijn CM, Trojanowski JQ, Shaw LM, Saykin AJ, Weiner MW, Doraiswamy PM, Kaddurah-Daouk R. Alzheimer's disease neuroimaging initiative and the alzheimer disease metabolomics consortium. metabolic network failures in alzheimer's disease: A biochemical road map. Alzheimers Dement. 2017;13(9):965-984. DOI: 10.1016/j.jalz.2017.01.020.

Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, Zipfel GJ, Holtzman DM. Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science. 2008;321(5893):1221-4.

DOI: 10.1126/science.1161591.

Paterson RW, Slattery CF, Poole T, Nicholas JM, Magdalinou NK, Toombs J, Chapman MD, Lunn MP, Heslegrave AJ, Foiani MS, Weston PSJ, Keshavan A, Rohrer JD, Rossor MN, Warren JD, Mummery CJ, Blennow K, Fox NC, Zetterberg H, Schott JM. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Res Ther. 2018;10(1):32.

DOI: 10.1186/s13195-018-0361-3.

Radanovic M, Oshiro CA, Freitas TQ, Talib LL, Forlenza OV. Correlation between CSF biomarkers of Alzheimer's disease and global cognition in a psychogeriatric clinic cohort. Braz J Psychiatry. 2019;41(6):479-484.


De Reuck J, Deramecourt V, Cordonnier C, Leys D, Pasquier F, Maurage CA. Prevalence of small cerebral bleeds in patients with a neurodegenerative dementia: a neuropathological study. J Neurol Sci. 2011;300(1-2):63-6.

DOI: 10.1016/j.jns.2010.09.031.

Niemantsverdriet E, Feyen BF, Le Bastard N, Martin JJ, Goeman J, De Deyn PP, Engelborghs S. Overdiagnosing vascular dementia using structural brain imaging for dementia Work-Up. J Alzheimers Dis. 2015;45(4):1039-43.

DOI: 10.3233/JAD-142103.

Le Bastard N, De Deyn PP, Engelborghs S. Importance and impact of preanalytical variables on Alzheimer disease biomarker concentrations in cerebrospinal fluid. Clin Chem. 2015;61(5):734-43.

DOI: 10.1373/clinchem.2014.236679.

Niemantsverdriet E, Ottoy J, Somers C, De Roeck E, Struyfs H, Soetewey F, Verhaeghe J, Van den Bossche T, Van Mossevelde S, Goeman J, De Deyn PP, Mariën P, Versijpt J, Sleegers K, Van Broeckhoven C, Wyffels L, Albert A, Ceyssens S, Stroobants S, Staelens S, Bjerke M, Engelborghs S. The cerebrospinal fluid Aβ1-42/Aβ1-40 ratio improves concordance with Amyloid-PET for diagnosing Alzheimer's disease in a clinical setting. J Alzheimers Dis. 2017;60(2):561-576.

DOI: 10.3233/JAD-170327.

Tarawneh R, D'Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM. Diagnostic and prognostic utility of the synaptic marker neurogranin in alzheimer disease. JAMA Neurol. 2016;73(5):561-71. DOI: 10.1001/jamaneurol.2016.0086.

De Vos A, Jacobs D, Struyfs H, Fransen E, Andersson K, Portelius E, Andreasson U, De Surgeloose D, Hernalsteen D, Sleegers K, Robberecht C, Van Broeckhoven C, Zetterberg H, Blennow K, Engelborghs S, Vanmechelen E. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer's disease. Alzheimers Dement. 2015;11(12):1461-1469.

DOI: 10.1016/j.jalz.2015.05.012.

Formichi P, Battisti C, Radi E, Federico A. Cerebrospinal fluid tau, A beta, and phosphorylated tau protein for the diagnosis of Alzheimer's disease. J Cell Physiol. 2006;208(1):39-46.

DOI: 10.1002/jcp.20602.

Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, Blennow K. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol. 2001;58(3):373-9. DOI: 10.1001/archneur.58.3.373.

Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2003;2(10):605-613. DOI:10.1016/s1474-4422(03)00530-1

Abad MA, Enguita M, DeGregorio-Rocasolano N, Ferrer I, Trullas R. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer's brain. J Neurosci. 2006;26(49):12735-47.

DOI: 10.1523/JNEUROSCI.0575-06.2006.

Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H, Vanmechelen E, Förstl H, Kurz A. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry. 2003;8(3):343-7.

DOI: 10.1038/

Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx. 2004;1(2):213-25.

DOI: 10.1602/neurorx.1.2.213.

Fagan AM, Perrin RJ. Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer's disease. Biomark Med. 2012;6(4):455-76.

DOI: 10.2217/bmm.12.42.

Rosén C, Andreasson U, Mattsson N, Marcusson J, Minthon L, Andreasen N, Blennow K, Zetterberg H. Cerebrospinal fluid profiles of amyloid β-related biomarkers in Alzheimer's disease. Neuromolecular Med. 2012;14(1):65-73. DOI: 10.1007/s12017-012-8171-4.

Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song YQ, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, Der SD, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St George-Hyslop P. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39(2):168-77.

DOI: 10.1038/ng1943.

Ma QL, Galasko DR, Ringman JM, Vinters HV, Edland SD, Pomakian J, Ubeda OJ, Rosario ER, Teter B, Frautschy SA, Cole GM. Reduction of SorLA/LR11, a sorting protein limiting beta-amyloid production, in Alzheimer disease cerebrospinal fluid. Arch Neurol. 2009;66(4):448-57.

DOI: 10.1001/archneurol.2009.22.

Fabbro S, Seeds NW. Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J Neurochem. 2009;109(2):303-315.


Nielsen HM, Minthon L, Londos E, Blennow K, Miranda E, Perez J, Crowther DC, Lomas DA, Janciauskiene SM. Plasma and CSF serpins in Alzheimer disease and dementia with Lewy bodies. Neurology. 2007;69(16):1569-79.


Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis. PLoS One. 2011;6(4):e18850. DOI: 10.1371/journal.pone.0018850.

Simonsen AH, McGuire J, Podust VN, Davies H, Minthon L, Skoog I, Andreasen N, Wallin A, Waldemar G, Blennow K. Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer's disease. Neurobiol Aging. 2008;29(7):961-8.


Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease. PLoS One. 2011;6(1):e16032.

DOI: 10.1371/journal.pone.0016032.

Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, Scheltens P, van der Flier WM, Morris JC, Holtzman DM, Fagan AM. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer's disease in a memory clinic cohort. Alzheimers Res Ther. 2015;7(1):59.

DOI: 10.1186/s13195-015-0142-1.

Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, Blennow K, Hansson O. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology. 2018;91(9):e867-e877.

DOI: 10.1212/WNL.0000000000006082.

Gleerup HS, Hasselbalch SG, Simonsen AH. Biomarkers for alzheimer's disease in saliva: A systematic review. Dis Markers. 2019;2019:4761054.

DOI: 10.1155/2019/4761054.

Hartmann S, Ledur Kist TB. A review of biomarkers of Alzheimer's disease in noninvasive samples. Biomark Med. 2018;12(6):677-690.


Bermejo-Pareja F, Antequera D, Vargas T, Molina JA, Carro E. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study. BMC Neurol. 2010;10:108.

DOI: 10.1186/1471-2377-10-108.

Shi M, Sui YT, Peskind ER, Li G, Hwang H, Devic I, Ginghina C, Edgar JS, Pan C, Goodlett DR, Furay AR, Gonzalez-Cuyar LF, Zhang J. Salivary tau species are potential biomarkers of Alzheimer's disease. J Alzheimers Dis. 2011;27(2):299-305.

DOI: 10.3233/JAD-2011-110731.

Yilmaz A, Geddes T, Han B, Bahado-Singh RO, Wilson GD, Imam K, Maddens M, Graham SF. Diagnostic biomarkers of alzheimer's disease as identified in saliva using 1H NMR-Based metabolomics. J Alzheimers Dis. 2017;58(2):355-359.

DOI: 10.3233/JAD-161226.

Ennis GE, An Y, Resnick SM, Ferrucci L, O'Brien RJ, Moffat SD. Long-term cortisol measures predict Alzheimer disease risk. Neurology. 2017;88(4):371-378.

DOI: 10.1212/WNL.0000000000003537.

Carro E, Bartolomé F, Bermejo-Pareja F, Villarejo-Galende A, Molina JA, Ortiz P, Calero M, Rabano A, Cantero JL, Orive G. Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin. Alzheimers Dement (Amst). 2017;8:131-138.

DOI: 10.1016/j.dadm.2017.04.002.

Lau HC, Lee IK, Ko PW, Lee HW, Huh JS, Cho WJ, Lim JO. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor. PLoS One. 2015;10(2):e0117810.

DOI: 10.1371/journal.pone.0117810.

Yilmaz A, Geddes T, Han B, Bahado-Singh RO, Wilson GD, Imam K, Maddens M, Graham SF. Diagnostic biomarkers of alzheimer's disease as identified in saliva using 1H NMR-based metabolomics. J Alzheimers Dis. 2017;58(2):355-359.

DOI: 10.3233/JAD-161226.

Huan T, Tran T, Zheng J, Sapkota S, MacDonald SW, Camicioli R, Dixon RA, Li L. Metabolomics analyses of saliva detect novel biomarkers of alzheimer's disease. J Alzheimers Dis. 2018;65(4):1401-1416. DOI: 10.3233/JAD-180711.

Talib LL, Joaquim HP, Forlenza OV. Platelet biomarkers in Alzheimer's disease. World J Psychiatry. 2012;2(6):95-101.

DOI: 10.5498/wjp.v2.i6.95.

Neumann K, Farías G, Slachevsky A, Perez P, Maccioni RB. Human platelets tau: a potential peripheral marker for Alzheimer's disease. J Alzheimers Dis. 2011;25:103–109.

DOI: 10.3233/JAD-2011-101641

Ruan Q, D'Onofrio G, Sancarlo D, Greco A, Yu Z. Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty. Mol Med Rep. 2016;14(4):3184-98.

DOI: 10.3892/mmr.2016.5618.

Ma L, Chen J, Wang R, Han Y, Zhang J, Dong W, Zhang X, Wu Y, Zhao Z. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J Clin Neurosci. 2015;22:649–652.

DOI: 10.1016/j.jocn.2014.10.011.

Zengi O, Karakas A, Ergun U, Senes M, Inan L, Yucel D. Urinary 8-hydroxy-2'-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer's disease. Clin Chem Lab Med. 2011 Nov 18;50(3):529-34.

DOI: 10.1515/CCLM.2011.792.

Peng J, Guo K, Xia J, Zhou J, Yang J, Westaway D, Wishart DS, Li L. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease. J Proteome Res. 2014 Oct 3;13(10):4457-69.

DOI: 10.1021/pr500828v.