N-Acetylcysteine Inhibits Lipids Production in Mature Adipocytes through the Inhibition of Peroxisome Proliferator-Activated Receptor 

Main Article Content

Daniela Soto
Claudia Martini
Evelyn Frontera
Laura Montaldo
Maria C. Vila
Juan C. Calvo
Liliana N. Guerra

Abstract

Aims: Reports regarding the effects of antioxidants in obesity have been contradictory. Antioxidant N-acetylcysteine is usually considered a nutritional supplement. Our aim is to evaluate bioactivity of N-acetylcysteine (NAC) on mature adipocytes, which is a close model to in vivo condition.

Study Design: In vitro study.

Place and Duration of Study: Department of Basic Science (Universidad Nacional de Lujan), Department of Chemical Biology (Universidad de Buenos Aires), CONICET – INEDES and CONICET – IQUIBICEN, between March 2017 and June 2019.

Methodology: We evaluated the bioactivity of different concentrations of NAC for 5 days (0.01 mM to 5 mM) on fully differentiated 3T3-L1 cells (mature adipocytes).

Results: We demonstrated that NAC treatment was not toxic to mature adipocytes. Only 5mM NAC inhibited reactive oxygen species production. 5 mM NAC treatment resulted in a 60% decrease in cellular triglycerides content and inhibited 70% cholesterol accumulation.  We also determined the mRNA and protein expression levels of Peroxisome Proliferator-Activated Receptor g as well as, mRNA levels of lipid protein Perilipin in NAC treated adipocytes; we observed that 5mM NAC treatment caused nearly 30% decrease in the expression of these parameters.

Conclusion: These results suggest that NAC could avoid lipid accumulation in mature adipocytes; the antioxidant NAC could be beneficial in obesity treatment.

Keywords:
Antioxidants, obesity, peroxisome proliferator-activated receptor gamma.

Article Details

How to Cite
Soto, D., Martini, C., Frontera, E., Montaldo, L., Vila, M. C., Calvo, J. C., & Guerra, L. N. (2020). N-Acetylcysteine Inhibits Lipids Production in Mature Adipocytes through the Inhibition of Peroxisome Proliferator-Activated Receptor . International Journal of Biochemistry Research & Review, 29(4), 17-29. https://doi.org/10.9734/ijbcrr/2020/v29i430182
Section
Original Research Article

References

Ye Z, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta. 2015;1850:1607–21.

Wensveen FM, Valentić S, Šestan M, Wensveen T, Polić B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol. 2015;45:2446–56.

Moreno-Navarrete JM, Fernandez-Real JM. Adipocyte Differentiation. In: Symonds M Ed. Adipose Tissue Biology, New York: Springer; 2012.

Julianelli VL, Guerra LN, Calvo JC. Cell-cell communication between mouse mammary epithelial cells and 3T3-L1 preadipocytes: Effect on triglyceride accumulations and cell proliferarion. Biocell. 2007;31:237–45.

Calzadilla P, Sapochnik D, Cosentino S, Diz V, Dicelio L, Calvo JC, Guerra LN. N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes. Int J Mol Sci. 2011;12:6936–51.

Calzadilla P, Gomez-Serrano M, Garcia-Santos E, Schiappacasse A, Abalde Y, Calvo JC, Peral B, Guerra LN. N-acetylcysteine affects obesity-related protein expression in 3T3-L1 adipocytes. Redox Rep. 2013;18:210-8.

Soto D, Gomez-Serrano M, Pieralisi A, Calvo JC, Peral B, Guerra LN. N-acetylcyteine inhibits kinase phosphorylation during 3T3-L1 adipocytes differentiation. Redox Rep. 2017;22:265-71.

Wang H, Scott RE. Inhibition of distinct steps in the adipocyte differentiation pathway in 3T3 T mesenchymal stem cells by dimethyl sulphoxide (DMSO). Cell Prolif. 1993;26:55-66.

Mac Dougald O A, Lane MD. Transcriptional regulation of the gene expression during adipocyte differentiation. Annu Rev Biochem. 1995;64:345-58.

Arimura N, Horiba T, Imagawa M, Shimizu M, Sato RJ. The peroxisome proliferator activated receptor gamma regulates expression of the perilipin gene in adipocytes. Biol Chem. 2004;279:10070-6.

Mahadev K, Wu X, Zilbering A, Zhu L, Todd J, Lawrence R. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem. 2001;276: 48662–9.

Dröge W. Free radicals in physiological control of cell function. Physiol Rev. 2002;82:47–95.

Stone JR, Yang SP. Hydrogen peroxide: A signaling messenger. Antioxid Redox Signal. 2006;8:243–70.

Lee H, Jeong Y, Choi H, Ko E, Kim J. Reactive oxygen species facilitates adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem. 2009;284:10601–9.

Imhoff BR, Hansen JM. Extracellular redox environments regulate adipocyte differentiation. Differentiation. 2010;80:31–9.

Pieralisi A, Martini C, Soto D, Vila MC, Calvo JC, Guerra LN. N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes. Redox Biology. 2016;9:39-44.

Kim H, Sakamoto K. Epigallocatechin gallate suppress adipocyte differentiation through the MEK/ERK and PI3K/Akt pathways. Cell Biol Int. 2012;36:147-53.

Chang YC, Yu YH, Shew JY, Lee WJ, Hwang JJ, Chen YH , Chen YR, Wei PC, Chuang LM, Lee WH. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med. 2013;5:1165–79.

Wang W, Zhang Y, Lu W, Liu K. Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine. PloS ONE. 2015;10:e0120629.

DOI:10.1371/journal.pone.0120629.

Chen G, Han Y, He W, Liang F. Amentoflavone protects against high fat-induced metabolic dysfunction: possible role of the regulation of adipogenic differentiation. Int J Mol Med. 2016; 38:1759–67.

Miler E, Burdman JA, Ríos de Molina MC, Bechara Y, Guerra LN. Thyroid hormone and oxidative metabolism. In: Boveris A. Ed. Free Radical Research International, Bologna: Monduzzi; 2004.

Miler EA, Rios MC, Dominguez G, Guerra LN. Thyroid hormone effect in human hepatocytes. Redox Rep. 2008;13:185– 91.

Guerra LN, Moiguer S, Karner M, Rios de Molina MC, Sreider C, Burdman JA. Antioxidants in the treatment of Graves Disease. IUBMB Life. 2001;51: 105–9.

Guerra LN, Rios de Molina MC, Miler EA, Moiguer S, Karner M, Burdman JA. Antioxidants and methimazole in the treatments of Graves’ disease: effect on urinary malondialdehyde levels. Clin Chim Acta. 2005;352:115–20.

Raggi MA, Nobile L, Giovannini AG. Spectrophotometric determination of glutathione and of its oxidation product in pharmaceutical dosage forms. Journal of Pharmaceutical and Biomedical Analysis. 1991;9:1037-40.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

Gabrielli M, Romero DG, Martini C, Raiger-Iustman LJ, Vila MC. MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes. Mol Cell Biochem. 2018; 448:299-309.

DOI:10.1007/s11010-018-3334-8.

Analytical Software Statistix8. Tallahassee FL: Mcgraw–Hill/Irwin; 2003.

Glenn KC, Shieh JJ, Laird DM. Characterization of 3T3-L1 Storage Lipid Metabolism: Effect of somatottropin and Insulin on Specific Pathways. Endocrinology. 1992;131:1115-24.

Keany JF, Larson MG, Vasan RS. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23:434–9.

Gummersbach C, Hemmrich K, Klaus-Dietrich K, Suschek CV, Fehsel K, Pallua N. New aspect of adipogenesis: radicals and oxidative stress. Differentiation. 2009; 77:115–20.

Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacological Research. 2019;146:104332.

DOI:10.1016/j.phrs.2019.104332

Samuni Y, Goldstein S, Dean O, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830:4117–29.

Raftos J, Whillier S, Bogdan E, Kuchel P. Kinetics of uptake and deacetylation of N-acetylcysteine by human erythrocytes. Int J Biochem Cell Biol. 2007;39:1698–706.

Tada F, Abe M, Kawasaki K, Miyake T, Shiyi C, Hiasa Y, Matsuura B, Onji M. B cell activating factor in obesity is regulated by oxidative stress in adipocytes. J Clin Biochem Nutr. 2013;52:120–7.

Posa JK, Selvaraj S, Sangeetha KN, Baskaran SK, Lakshmi BS. p53 mediates impaired insulin signaling in 3T3-L1 adipocytes during hyperinsulinemia. Cell Biol Int. 2014;38:818–24.

Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem. 2005;280:4617-26.

Hallenborg P, Jørgensen C, Petersen RK, Feddersen S, Araujo P, Markt P, Langer T, Furstenberger G, Krieg P, Koppen A, Kalkhoven E, Madsen L, Kristiansen K. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity. Mol Cell Biol. 201;30:4077–91.

Kadota Y, Toriuchi Y, Aki Y, Mizuno Y, Kawakami T, Nakaya T, Sato M, Suzuki S. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway, PLoS One. 2017;12:e0176070.

DOI: 10.1371/journal.pone.0176070.

Lefterova M, Haakonsson A, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends in Endocrinology and Metabolism. 2014;25: 293-302.

Seul GL, Jongbeom C, Jin SK, Kyoungjin M, Taeg KW, Ju-Ock N. Jaceosidin inhibits adipogenesis in 3T3-L1 adipocytes through the PPAR gamma pathway. Natural Product Communications. 2018; 13:1289-91.

Liu L, Zou P, Zheng L, Linarelli LE, Amarell S, Passaro A. Liu D, Cheng Z. Tamoxifen reduces fat mass by boosting reactive oxygen species, Cell Death Dis. 2015;6:e1586. DOI:10.1038/cddis.2014.553.

Tansey JT, Sztalryd C, Hlavin E, Kimmel AR, Londos C. The central role of perilipin A in lipid metabolism and adipocyte lipolysis. IUBMB Life. 2004;56:379-85.

Sztalryd C, Brasaemle DL. Theperilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta. 2017;1862:1221-32.

De Tursi Rispoli L, Vazquez Tarragon A, Vazquez Prado A, Saez Tormo G, Ismail A, Gumbau Puchol V. Oxidative stress: a comparative study between normal and morbid obesity group population. Nutr Hosp. 2013;28:671–5.

Hermsdorff H, Puchau B, Volp A, Barbosa K, Bressan J, Zulet M, Martinez A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab. 2011;8:59–65.