Hop-derived Xanthohumol Induces HL-60 Leukemia Cells Death

Main Article Content

M. Pacurari
H. Brown
A. Rieland


Background: Acute promyelocytic leukemia (APL) affects both kids and adults, however it is more prevalent in younger population. Although APL has a favorable prognostic, patients that relapse often do not respond positively to additional chemotherapy. Therefore, there is a need to further identify ways to overcome these challenges. 

Hypothesis: In this study, we examined antileukemic effects of xanthohumol (XN), a prenylated flavonoid derived from hops (Humulus lupulus L), on human promyelocytic HL-60 cells. 

Materials and Methods: HL-60 cells were exposed to different concentrations of XN (μM) for 24 h. Cell viability, cell morphology, chromatin condensation, cPARP-1 level, and caspase-3 activation, and the expression of p21WAF1/Cip1 were analyzed.

Results: XN reduced HL-60 cell viability in a dose-dependent manner. XN induced a dose-dependent morphological changes including cell shrinkage and blebbing, and significantly increased the number of cells with condensed chromatin. XN significantly increased the level of cPARP-1, active caspase-3, and the expression of p21WAF/CIP mRNA.

Conclusion: These data indicate that XN induces HL-60 cell death by regulating cell cycle progression and apoptosis. This study suggests that XN may have antileukemic preventive effects.

Acute promyelocytic leukemia, apoptosis, caspase-3, p21, xanthohumol, plant derived, HL-60 cells.

Article Details

How to Cite
Pacurari, M., Brown, H., & Rieland, A. (2020). Hop-derived Xanthohumol Induces HL-60 Leukemia Cells Death. International Journal of Biochemistry Research & Review, 29(1), 61-72. https://doi.org/10.9734/ijbcrr/2020/v29i130165
Original Research Article


Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002. Cancer Causes Control. 2008; 19:379-390.

Elbahesh E, Patel, Tabbara IA. Treatment of acute promyelocytic leukemia. Anti-cancer Res. 2014;34:1507-1517.

Huang J, Sun M, Wang Z, Zhang Q, Lou J, Cai Y, Chen W, Du X. Induction treatments for acute promyelocytic leukemia: a network meta-analysis. Oncotarget. 2016; 7:71974-71986.

Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012;119:34-43

Jabo B, Morgan JW, Martinez ME, Ghamsary M, Wieduwilt MJ. Sociodemographic disparities in chemotherapy and hematopoietic cell transplantation utilization among adult acute lymphoblastic and acute myeloid leukemia patients. PLoS One. 2017;12:e0174760.

Kamath GR, Tremblay D, Coltoff A, Caro J, Lancman G, Bhalla S, Najfeld V, Mascarenhas J, Taioli E. Comapring the epidemiology, clinical characteristics and prognostic factor of acute myeloid leukemia with and without acute promyelocytic leukemia. Carcinogenesis. 2019;40:651-660.

Breccia M, et al. Early hemorrhagic death before starting therapy in acute promyelocytic leukemia: Association with high WBC count, late diagnosis and delayed treatment initiation. Haematologica. 2010;95:853-4.

Robak T, Wierzbowska A. Current and emerging therapies for acute myeloid leukemia. Clin Ther. 2009;31:1346-2370.

Calgarotto AK, Maso V, Junior GC, Nowill AE, Filho PL, Vassallo J, Saad STO. Antitumor activities of quercetin and green tea in xenografts of human leukemia HL-60 cells. Sci Rep. 2018;8:3459.

Chabner BA. In: Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 11th Edition. Brunton LL, Lazo JS, Parker KL, editors New York. 2006;1257-1262 (McGraw-Hill).

Guérritte F. On: Anticancer Agents from Natural Products. Cragg GM, Kingston DGI, Newman DJ. Editors Boca Raton, FL. 2005;123–135 (CRC/Taylor & Francis).

Bellmunt J, Albanell H, Gallego OS, Ribas A, Vicente P, Carulla H, De Torres J, Morote J, Lopez M, Sole LA. Carboplatin, methotrexate and vinblastine in patients with bladder cancer who were ineligible for cisplatin-based chemotherapy. Cancer. 1992;70:1974-9.

Fraschini G, Yap HY, Hortobagyi GN, Buzdar A, Blumenschein G. Five-day continuous-infusion vinblastine in the treatment of breast cancer. Cancer. 1985;56:225-9.

Vainionpaa L, Kovala T, Tolonen U, Lanning M. Vincristine therapy for children with acute lymphoblastic leukemia impairs conduction in the entire peripheral nerve. Pediatric Neurol. 1995;13:314-8.

Varedi M, Ness KK, McKenna RF. Balance deficits in long-term pediatric ALL survivors. Oncotarget. 2008;9:32554-32555.

Torello CO. Reactive oxygen species production triggers green tea-induced anti-leukemic effects on acute promyelocytic leukemia model. Cancer Lett. 2017;10: 116-126.

Hao Y, Zhang N, Wei N, Yin H, Zhang Y, Xu H, Zhou C, Doujie Li. Matrine induces apoptosis in acute myeloid leukemia cells by inhibiting the PI3K/Akt/mTOR signaling pathway. Oncol Lett. 2019;18:2891-2896.

Roehrer S, Stork V, Ludwig C, Minceva M, Behr J. Analyzing bioactive effects of the minor hop component xanthohumol C on human breast cancer cells using quantitative proteomics. Plos One. 2019;14:e0213469.

Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008;116:383-396.

Vogel S, Barbic M, Jürgenliemk G, Heilmann J. Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem. 2010;45:2206-13.

Aydin T, Bayrak N, Baran E, Cakir A. Insecticidal effects of extracts of Humulus lupulus (hops) L cones and its principal component, xanthohumol. Bull Entomol Res. 2017;10:543-549.

Lupinacci E, MeiJ.erink J, Vincken JP, Gabriele B, Gruppen H, Witkamp RF. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha release in LPS-stimulated RAW 264.7 mouse macro-phages and U937 human monocytes. J Agric Food Chem. 2009;57:7274-81.

Gerhauser C, Alt A, Heiss E, Gamal-Eldeen, Klimo K, Knauft J, Neumann I, Scherf R, Frank N, Bartsch H, Becker H. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther. 2001;1:959-969.

Dorn C, Kraus B, Motyl M, Weiss TS, Gehrig M, Schölmerich J, Heilmann J, Hellerbrand C. Xanthohumol, a chalcone derived from hops, inhibits hepatic inflammation and fibrosis. Mol Nutr Food Res. 2010;54:S205-S213.

Legette LL, Luna AY, Reed RL, Miranda CL, Bobe G, Proteau RR, et al. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochem. 2013;91:236-41.

Gerhauser C, Alt A, Heiss E, Gamal-Eldeen, Klimo K, Knauft J, Neumann I, Scherf R, Frank N, Bartsch H, Becker H. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther. 2002;1:959-969.

Kunnimalaiyaan S, Trevino J, Tsai S, Gamblin TC, Kunnimalaiyaan M. Xanthohumol-mediated suppression of Notch1 signaling is associated with antitumor activity in human pancreatic cancer cells. Mol Cancer Ther. 2015;14:1395-403.

Sun Z, Zhou C, Liu F, Zhang W, Chen J, Pan Y, Ma L, Liu Q, Yang J., Wang Q. Inhibition of breast cancer cell survival by xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol Lett. 2018;15:908-916.

Venturelli S, Burkard M, Biendl M, Lauer UM, Frank J., Busch C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutr. 2018;8:S0899-9007.

Slawinska-Brych A, Zdzisinska B, Dmoszynska-Graniczka M, Jeleniewicz W, Kurzepa J, Gagos M, Stepulak A. Xanthohumol inhibits the extracellular signal regulated (ERK) signaling pathway and suppresses cell growth of lung adenocarcinoma cells. Toxicol. 2016;357: 65-73.

Yong WK, Abd Malek SN. Xanthohumol induces growth inhibition and apoptosis in Ca Ski human cervical cancer cells. Evid Based Complement Alternat Med. 2015;921306.

Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of hexokinases II-mediated glycolysis. Int J Biol Sci. 2019;15:2497-2508.

Pacurari M, Qian Y, Porter DW, Wolfarth M, Wan Y, Luo D, Ding M, Castranova V, Guo NL. Multi-walled carbon nanotube-induced gene expression in the mouse lung: Association with lung pathology. Toxicol Appl Pharmacol. 2011;255:18-31.

Pacurari M, Addison BJ, Bondalapati N, Wan YW, Luo D, Qian Y, Castranova V, Ivanov AV, Guo N. The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells. Intern J Oncology. 2013;43:548-560.

Ramos NR, Co CC, Karp JE, Hourigan CS. Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J Clin Med. 2015;4:665-695.

Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, MaJeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci, USA. 2014;111:2548-2553.

Unnati S, Ripal S, San Jeev A, Nuyati A. Novel anticancer agents from plants. Chinese J of Nat Med. 2013;11:0016-0023.

Kumar A. Vincristine and vinblastine: A review. Intel J Med Pharm Sci. 2016;6:23-30.

Arimoto-Kobayashi S, Sugiyama C, Harada N, Takeuchi M, Takemura M, Hayatsu HJ. Inhibitory effects of beer and other alcoholic beverages on mutagenesis and DNA adduct formation induced by several carcinogens. Agric Food Chem. 1999;47:221-230.

Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, Buhler DR. Antiproliferative and cytotoxic effects of prenylated flavonoids from hop (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol. 1999;37:271-285.

Long B, Parks E, Pacurari P, Rieland A, Pacurari M. Cytotoxic effects of xantho-humol and its combination with cisplatin on human metastatic lung cancer H1299 cells. Journal of Advances in Medicine and Medical Research. 2019;1-15.

Gerhauser C, Alt A, Heiss E, Gamal-Eldeen, Klimo K, Knauft J, Neumann I, Scherf R, Frank N, Bartsch H, Becker H. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther 2002;1:959-969.

Li Y, Wang K, Yin S, Zheng H, Min D. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma. Oncol Lett. 2016;12:5289-5294.

Sun Z, Zhou C, Liu F, Zhang W, Chen J, Pan Y, Ma L, Liu Q, Yang J, Wang Q. Inhibition of breast cancer cell survival by xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol Lett. 2018;15:908-916.

Cao B, Chen H, Gao Y, Niu C, Zhang Y, Li L. CIP-36, a novel topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro. Int J Mol Med. 2015;35:771-776.

Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53:3976-3985.

Soldani C, Lazze MC, Bottone MG, Tgnon G, Biffigera M, Pellieciari CE, Scoassi AI. Poly(ADP-ribose) polymerase cleavage during apoptosis: When and Where. Exp Cell Res. 2001;269:193-201.

Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75: 805-16.

Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 1999;13: 1501-12.

Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: A function for each cell compartment? Trends Cell Biol. 2003;13: 65-70.