The Essentials of Biochemistry of the Proteins as Related to Alzheimer’s Disease: A Review

Main Article Content

A. S. V. Prasad

Abstract

Amyloid plaques and Tau tangles, constitute the pathological hallmarks of the brains of the patients suffering from Alzheimer’s disease. They are identified as far back as 1996 by Alois Alzheimer, a German psychiatrist and neuropathologist, but till this date, how they produce neuronal death remained an enigma. The amyloid cascade theory held its sway until recent times until the emphasis is shifted to the metabolites of amyloid Beta precursor protein (APP). Several metabolites of APP are formed depending on by which pathway, the APP is metabolized, either by the non -amyloidogenic pathway (forming α-C terminal fragment -CTFα / C83 and the N-terminal fragment sAPPα / P3 and the APP intracellular domain AICD). Or amyloidogenic pathways. (Forming extracellular Aβ and APP intracellular domain -AICD). The hyperphosphorylation is held responsible for the tau protein tangles. The over activity of the tau kinases or the failure of inhibition by the tau phosphatases is implicated, in tau tangle deposits. These biochemical aspects of AD assumed importance in connection with the interventional therapeutic strategies that are developed in the years bygone, as well as those still are in the developing stage. In keeping with this fact, it is attempted to review the essentials of the biochemical aspects of the involved proteins, as related to AD, in this article.

Keywords:
Amyloid Precursor Protein (APP), amyloid beta, amyloid plaques, tau protein, amyloid cascade theory, amyloidogenic pathway, non-amyloidogenic pathway, secretases.

Article Details

How to Cite
Prasad, A. S. V. (2020). The Essentials of Biochemistry of the Proteins as Related to Alzheimer’s Disease: A Review. International Journal of Biochemistry Research & Review, 29(1), 34-49. https://doi.org/10.9734/ijbcrr/2020/v29i130163
Section
Review Article

References

Blocq Paul, Marinesco Georges. Sur les lesions et la pathogenie de l' epilepsie dite essentielle. 1892;445–6.

Alzheimer A. Uber einen eigenartige Erkranung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und Psychisch-Gerichtlich Medizin. 1907;64:146–8.

Op den Velde W; Stam FC. Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. Journal of the American Geriatrics Society. 1976;24(1):12–6.

Lichtenthaler, Haass, Steiner. Methods in Enzymology. 2011;2.

Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011;70:871–80.

Chen GF, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin; 2017.

Han S, Kollmer M, Markx D, et al. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography. Sci Rep. 2017;7: 43577.

Nanoscale scale structure ref Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, et al. Nanoscale structure of amyloid-β plaques in Alzheimer’s disease. Sci Rep. 2019;9:5181.

Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J. Synapse formation and function is modulated by the amyloid precursor protein. The Journal of Neuroscience. 2006;26(27):7212–21.

Turner PR, Connor OK, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology. 2003;70(1):1–32.

Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer´s disease. Alzheimer´s & Dementia. 2018;14(12):1602–1614.

Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell. 2010;142(6):857–67.

The amyloid plaque hypothesis.

Heinz Hillen. The beta amyloid dysfunction (BAD) Hypothesis for Alzheimer’s Disease. Front Neurosci. 2019;13:1154.

Weidemann A, et al. Identification, biogenesis, and localization of precursors of Alzheimers disease A4 amyloid protein. Cell. 1989;57:115–126.

Suzuki T, Araki Y, Yamamoto T, Nakaya T. Trafficking of Alzheimer’s disease-related membrane proteins and its participation in disease pathogenesis. J Biochem. 2006; 139:949–955.

Yuhki Saito, Mayu Akiyama, Yoichi Araki, Akio Sumioka, Maki Shiono, Hidenori Taru, Tadashi Nakaya, Tohru Yamamoto, Toshi Yuhki Saito, Mayu Akiyama, Yoichi Araki, Akio Sumioka, Maki Shiono, Hidenori Taru, Tadashi Nakaya, Tohru Yamamoto, Toshiharu Suzuki trafficking of the amyloid β-protein precursor (APP) regulated by novel function of X11-likem Article number 22108. Journal PLoS One. State Published. 2011;6(7).

El Emily S. Stieren, José M. Barral, Darren Boehning Amino Ubiquilin-1 regulates precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 6 PNAS August 14, 2.

Soriano S, et al The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem. 2001 amyloid fibrils revealed by electron tomography. Sci Rep. 2017;7:43577.

Lardeux BR, Mortimore GE. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. J Biol Chem. 1987; 262(30):14514–9.
[PubMed] [Google. Scholar]

Baehrecke EH. Autophagy: Dual roles in life and death? Nature Reviews Molecular Cell Biology. 2005;6(6):505–10.

Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer’s disease. J Neurosci. 2008;28(27):692.

Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol. 2003;162(1): 313–9.

Zhang Y, et al Sink hypothesis and therapeutic strategies for attenuating Abeta levels. Review article. Neuroscientist; 2011.

Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, Van Nostrand WE. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem. 2004; 279(19):20296-306.
[Epub 2004 Feb 25 PubMed]

Equimolahr production of amyloid β-protein and amyloid precursor protein intracellular domain from β-carboxyl-terminal fragment by γ-secretase. J. Biol. Chem. 2006;281: 14776–14786.

Kakuda N, Funamoto S, Yagishita S, Takami M, Osawa S, Dohmae N, Ihara Y. Equimolahr production of amyloid β-protein and amyloid precursor protein intracellular domain from β-carboxyl-terminal fragment by γ-secretase. J. Biol. Chem. 2006;281: 14776–14786.

Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J. Neurochem. 2012;120(Suppl. 1):109–124.

Flammang B, Pardossi-Piquard R, Sevalle J, Debayle D, Dabert-Gay AS, Thévenet A, Lauritzen I, Checler F. Evidence that the amyloid-β protein precursor intracellular domain, AICD, derives from β-secretase-generated C-terminal fragment. J. Alzheimers Dis. 2012;30:145–153.
[PubMed] [Google Scholar].

Kume H, Maruyama K, Kametani F. Intracellular domain generation of amyloid precursor protein by ϵ-cleavage depends on C-terminal fragment by α-secretase cleavage. Int. J. Mol. Med. 2004;13:121–125.
[PubMed] [Google Scholar]

Sastre M, Steiner H, Fuchs K, Capell A, Multhaup G, Condron MM, Teplow DB, Haass C. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2001;2:835–841.
[PMC free article] [PubMed] [Google Scholar]

Edbauer D, Willem M, Lammich S, Steiner H, Haass C. Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD). J. Biol. Chem. 2002;277:13389–3393.
[PubMed] [Google Scholar]

Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBio Medicine. 2016;6:42–49.

Walsh DM, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535–9.

Yang Y, et al. Amyloid-β oligomers may mpair SNARE-mediated exocytosis by direct binding to syntaxin 1a. 2015. Cell Rep. 2015;12(8):1244–51.

Lacor PN, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27(4):796–807.

Koffie RM, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106(10):4012–7.

Pickett EK, et al. Non-Fibrillar oligomeric amyloid-β within synapses. J Alzheimers Dis. 2016;53(3):787–800.

Ahsan Habib, Darrell Sawmiller, Jun Tan. Restoring sAPPα functions as a potential treatment for Alzheimer’s disease. J Neurosci Res. 2017;95(4):973–991.

Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(2):567–571. [Status Peptides. Amyloid Peptides. 23(7):1311–1315.

Azimov Rustam, Kagan Bruce L. Delcour, Anne H. (ed.). Amyloid peptide channels. Springer Series in Biophysics. Springer International Publishing. 2015;343–360.
DOI: 10.1007/978-3-319-20149-8_14
[ISBN 9783319201481]

Kagan BL. Mode of action of yeast killer toxins: Channel formation in lipid bilayer membranes. Nature. 1983;302(5910): 709–711.
DOI: 10.1038/302709a0
[ISSN 0028-0836 PMID 6300695.17]

Knapp O, Benz R, Popoff MR. Pore-forming activity of clostridial binary toxins. Biochimica et Biophysica Acta (BBA) - Biomembranes. Pore-Forming Toxins: Cellular Effects and Biotech Applications. 2016;1858(3):512–525.

Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta. 1987;917:148–161.

Myers RH, Schaefer EJ, Wilson PW, D'Agostino R, Ordovas JM, Espino A, Au R, White RF, Knoefel JE, Cobb JL, McNulty KA, Beiser A, Wolf PA. Apolipoprotein E epsilon4 association with dementia in a population-based study: The Framingham study. Neurology. 1996;46: 673–677.

Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD. Apolipoprotein E associates with beta amyloid peptide of Alzheimer 's disease.

Wisniewski T, Castaño EM, Golabek A, Vogel T, Frangione B. Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro. Am J Pathol. 1994;145:1030–1035.

Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3(4):519–26.

Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America; 1975.

RW, Iwaki T, Kitamoto T, Tateishi J. Hydrated autoclave pretreatment enhances tau immunore activity in formalin-fixed normal and Alzheimer's disease brain tissues. Laboratory Investigation. A Journal of Technical Methods and Pathology. 1991;64(5):693-702.
[PMID 1903170]

Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Wisniewski HM, et al. Accumulation of abnormally phosphorylated x precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res. 1989;477(1–2):90–9913.

Santa-Maria I, Haggiagi A, Liu X, Wasserscheid J, Nelson PT, Dewar K, Clark LN, Crary JF. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol. 2012;124(5):693–704.

Santa-Maria Ismael, Haggiagi Aya, Liu Xinmin, Wasserscheid Jessica, Nelson Peter T, Dewar Ken, Clark Lorraine N, Crary John F. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathologica. 2012; 124(5):693–704.

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82(4):239-59.

Baird FJ, Bennett CL. Microtubule defects & Neurodegeneration. J Genet Syndr Gene Ther. 2013;4:203.

Scholz T, Mandelkow E. Transport and diffusion of Tau protein in neurons. Cell Mol Life Sci. 2014;71:3139–50.

Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82:756–71.

Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, et al. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem. 2011;286:4566–75.

56. Violet M, Delattre L, Tardivel M, Sultan A, Chauderlier A, Caillierez R, et al. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci. 2014;8:84.

Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biology. 2004;6(1):204.
DOI: 10.1186/gb-2004-6-1-204
[PMC 549057. PMID 15642108]

Cleveland DW, Hwo SY, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. Journal of Molecular Biology. 1977;116(2): 207–25.

Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A; 1988.

Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(11):4051.

Taniguchi T, Mukai H, Hasegawa H, Isagawa T, Yasuda M, Hashimoto T, Terashima A, Nakai M, Mori H, Ono Y, Tanaka C. Phosphorylation of tau is regulated by PKN. The Journal of Biological Chemistry. 2001;276(13):10025-31.
DOI: 10.1074/jbc.M007427200
[PMID 11104762]

Spillantini MG, Goedert M. The lancet neurophysiological and pathological consequences of Tau hosphorylation Biochimica et Biophiiysica Acta (BBA) - Molecular Basis of Disease. 2005;1739(2–3):280-297. 2013;12(6):609-

Dke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proceedings of Thei National Academy of Sciences of the United States of America. 1997;94(1):298-303.
[Bibcode:1997PNAS...94..298A]
DOI: 10.1073/pnas.94.1.298
[PMC 19321, PMID 8990203]

Vincent IJ, Davies P. Phosphorylation characteristics of the A68 protein in Alzheimer’s disease. Brain Research. 1990;531(1–2):127–35.

Phosphorylation of different tau sites during progression of Alzheimer’s disease Joerg Neddens, Magdalena Temmel ,Birgit Hutter-Paier Acta Neuropathologica Communications. 2018;6.

Clavaguera F, et al. Prion-like transmission and spreading of tau pathology Neuro-pathol Appl Neurobiol. Agregation of Tau; 2015.

Carol J. Huseby, Ralf Bundschuh, Jeff Kent. The role of annealing and fragmentation in human tau aggregation dynamics. J Biol Chem. 2019;294(13): 4728–4737.

Spillantini MG, Goedert M. The lancet neuro. 2013;12(6):609-622.

Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Research. 1986;387(3):271–80.

Sergeant N, Delacourte A, Buée L. Tau protein as a differential biomarker of tauopathies. Biochimica et Biophysica Acta. 2005;1739(2–3):179–97.