Bioactive Peptides from Marine Molluscs – A Review

Main Article Content

Queensley A. Eghianruwa
Omolaja R. Osoniyi
Naomi Maina
Sabina Wachira

Abstract

Marine organisms make up approximately half of the total global biodiversity, with the Mollusca containing the second largest number of species, including snails and bivalves. The marine environment is highly competitive, hostile and aggressive, which has led to the production of specific and potent bioactive compounds by the mollusca and their associated microorganisms, in a bid to protect themselves and ensure their survival. A diverse array of bioactive compounds can be isolated from the extracts of marine molluscs of which linear, cyclic, and conjugated peptides and depsipeptides form some of the most important bioactive compounds that have been well characterized and some of have already reached clinical trials or been approved for use as therapeutic agents and supplements. This review highlights some of the bioactive peptides that have been obtained from marine molluscs as well the challenges facing bioprospecting of valuable peptides from marine mollusc sources.

Keywords:
Bioactive peptides, novel drug molecules, marine mollusks, bioprospecting.

Article Details

How to Cite
Eghianruwa, Q. A., Osoniyi, O. R., Maina, N., & Wachira, S. (2019). Bioactive Peptides from Marine Molluscs – A Review. International Journal of Biochemistry Research & Review, 27(4), 1-12. https://doi.org/10.9734/ijbcrr/2019/v27i430130
Section
Review Article

References

Benkendorff K. Molluscan biological and chemical diversity: Secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev Camb Philos Soc. 2010;85(4):757-775.

Jirge SS, Chaudhari YS. Marine: The ultimate source of bioactives and drug metabolites. IJRAP. 2010;1(1):55-62.

Datta D, Talapatra SN, Swarnakar S. Bioactive compounds from marine invertebrates for potential medicines – An overview. Int Lett Nat Sci Online. 2015;34: 42-61.

Yan H. Harvesting drugs from the seas and how taiwan could contribute to this Effort. Changhua J Med. 2004;9(1):1-6.

Jha RK, Xuzi-Rong. Biomedical compounds from marine organisms. Mar Drugs. 2004;2:123-146.

Suarez-Jimenez G, Burgos-Hernandez A, Ezquerra-Brauer J. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar Drugs. 2012;10:963-986.

Salehi A, Patong R, Ahmad A. Isolation and characterization of some kind bioactive proteins sponge as antibacterial agent. Int J Sci Tech Res (IJSTR). 2014; 3(2):233-236.

Chakraborty C, Hsu C, Wen Z, Lin C. Anticancer drugs discovery and development from marine organisms. Curr Top Med Chem. 2009;9:1536-1545.

Bertram, Kenneth. The role of natural killer activity in resistance to herpesvirus-induced disease [Dissertation]. [Rochester]: University of Minnesota. 1981; 138.

Apriandi Azwin. Aktivitas antioksidan dan komponen bioaktif keong ipong-ipong (Fasciolaria salmo) (Dissertation). (Bogor): Institut Pertanian Bogor. 2011;84.

Purwaningsih S. Aktivitas antioksidan dan komposisi kimia keong matah merah (Cerithidea obtusa). Indo J Mar Sci. 2012; 17(1):39-48.

Cheung RC, Ng TB, Wong JH, Chen YC, Chan WY. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol. 2006;100:1645-1666.

Bouchet P. The magnitude of marine biodiversity. In: Duarte CM. (Editor). The exploration of marine Biodiveristy. Scientific and technological challenges. France: Fundacion BBVA. 2006;33–64.

Pechenik JA. Biology of the invertebrates. 4th edition. Dubuque IA USA: William C Brown Pub. 2000;576.

Jamabo N, Alfred-Ockiya JF. Tympanotonus fuscatus: Its potential and abundance In the mangrove swamps of the upper Bonny river, River State. 19th conference of the fisheries society of Nigeria (FISON) held in Ilorin, Nigera; 2005.
Available:http://aquaticcommons.org/4063/1/693.pdf

Zabbey N, Malaquias MA. Epifauna diversity and ecology on intertidal flats in the tropical Niger Delta, with remarks on the gastropod species Haminoea orbignyana. J Mar Biol Assoc UK. 2013;93 (1):249–257.

Jimmy EO, Okonkwo, MA. Periwinkle (Pachymelania aurita) consumption induces in vivo electrolyte disorders. Int Res J Med Med Sci. 2016;4(2):17-23.

Ogamba EN, Izah SC, Omonibo E. Bioaccumulation of hydrocarbon, heavy metals and minerals in Tympanotonus fuscatus from Coastal Region of Bayelsa State, Nigeria. Int J Hydrol Res. 2016;1(1): 1-7.

Herbert DG, Hamer ML, Mander M, Mkhize N, Prins F. Invertebrate animals as a component of the traditional medicine trade in Kwa Zulu-Natal, South Africa. Afr. Invert. 2003;44:327–344.

Gopal R, Vijayakumaran M, Venkatesam R, Kathiroli S. Marine organisms in Indian medicine and their future prospects. Nat Prod Rad. 2008;7:139–145.

Benkendorff K, Rudd D, Nongmaithem BD, Liu L, Young F, Edwards V, Avila C, Abbott, CA. Are the traditional medical uses of Muricidae molluscs substantiated by their pharmacological properties and bioactive compounds? Mar Drugs. 2015; 13: z5237-5275.

Prabhakar AK, Roy, SP. Ethno-medical uses of some shell fishes by people of Kosi River Basin of North-Bihar, India. Ethno-Medicine. 2009;3:1–4.

Carnegie RB, Arzul I, Bushek D. Managing marine mollusc diseases in the context of regional and international commerce: policy issues and emerging concerns. Phil Trans R Soc B. 2016;371(1689): 20150215.

Guo X, Ford SE. Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Phil Trans R Soc B. 2016;371(1689): 20150206.

Simmons TL, Andrianasolo E, Mc Phail K, Flatt P, Gerwick WH. Marine natural products as anticancer drugs. Mol Cancer Ther. 2015;4:333–342.

Joseph B, Rajan SS, Jeevitha MV, Ajisha SU, Jini D. Conotoxins: A potential natural therapeutic for pain relief. Int J Pharm Pharm Sci. 2011;3(2):1¬-5.

Neves J, Campos A, Osório H, Antunes A, Vasconcelos V. Conopeptides from cape verde Conus crotchii. Mar Drugs. 2013;11: 2203-2215.

Pati P, Sahu BK, Panigrahy RC. Marine molluscs as a potential drug cabinet: An overview. Indian J Mar Sci. 2015;44(7): 961-970.

Kang HK, Choi MC, Seo CH, Park, Y. Therapeutic properties and biological Benefits of marine-derived anticancer Peptides. Int J Mol Sci. 2018;19:919.

Wesson KJ, Hamann MT. Keenamide A. A bioactive cyclic peptide from the marine mollusc Pleurobranchus forskalii. J Nat Prod. 1996;59(6):629-631.

Liu M, Zhao X, Zhao J, Xiao L, Liu H, Wang C, Cheng L, Wu N, Lin X. Induction of apoptosis, G0/G1 phase arrest and microtubule disassembly in K562 leukemia cells by Mere15, a novel polypeptide from Meretrix meretrix Linnaeus. Mar Drugs. 2012;10:2596–2607.

Wang H, Wei J, Wu N, Liu M, Wang C, Zhang Y, Wang F, Liu H, Lin X. Mere15, a novel polypeptide from Meretrix meretrix, inhibits adhesion, migration and invasion of human lung cancer A549 cells via down-regulating MMPs. Pharm Biol 2013;51: 145–151.

Pangestuti R, Kim S. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs. 2017;15(3):67.

Huang F, Ding G, Yang Z, Yu F. Two novel peptides derived from Sinonovacula constricta inhibit the proliferation and induce apoptosis of human prostate cancer cells. Mol Med Rep. 2017;16(5):6697-6707.

Anand TP, Chellaram C, Kuberan G, Archana H. Bioactive peptides from marine sources- A Review. Indian J Inno Dev. 2012;1(S8):61- 64.

Bai R, Verdier-Pinard P, Gangwar S, Stessman CC, Mcclure KJ, Sausville EA, Pettit GR, Bates RB, Hamel E. Dolastatin 11, A marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Mol Pharmacol. 2001;59(3):462–469.

Woyke T, Pettit GR, Winkelmann G, Pettit RK. In vitro activities and postantifungal effects of the potent dolastatin 10 derivative auristatin PHE. Antimicrob Agents Chemother. 2001;45(12):3580–3584.

Shukla S. Therapeutic importance of peptides from marine sources: A mini review. Indian J Mar Sci. 2016;45(11): 1422-1431.

Aneiros A, Garateix A. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;803:41–53.

ADC reviews. Dolastatins (Dolastatin 10 and dolastatin 15); 2015.
Available:https://adcreview.com/adc-university/adcs-101/cytotoxic-agents/dolastatins-dolastatin-10-and-dolastatin-15/

Poncet J. The dolastatins, a family of promising antineoplastic agents. Current pharm Des. 1999;5(3):139-162.

Mirsalis JC, Schindler-Horvat J, Hill JR, Tomaszewski JE, Donohue SJ, Tyson CA. Toxicity of dolastatin 10 in mice, rats and dogs and its clinical relevance. Cancer Chemother Pharmacol. 1999;44(5):395-402.

Vaishampayan U, Glode M, Du W, Kraft A, Hudes G, Wright J, Hussain M. Phase II study of Dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin Cancer Res. 2000; 6:4205–4208

Hashizume H, Nishimura Y. Cyclic lipopeptide antibiotics. Stud Nat Prod Chem. 2008;35:693-751.

Madden T, Tran HT, Beck D, Huie R, Newman RA, Pusztai L, Wright JJ, Abbruzzese JL. Novel marine-derived anticancer agents: A phase I clinical, pharmacological and pharmacodynamic study of dolastatin 10 (NSC 376128) in Patients with Advanced Solid Tumors. Clin Cancer Res. 2000;6(4):1293-1301.

Suarez Y, Gonzalez L, Cuadrado A, Berciano M, Lafarga M, Munoz A, Kahalalide F. A new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther. 2003;2(9):863-872.

Faircloth G, Cuevas C. Kahalalide F and ES285: Potent anticancer agents from marine molluscs. Prog Mol Subcell Biol. 2006;43:363-379.

Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FAE, Giaccone G, Kahalalide F. Induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of akt signaling. Mol Pharmacol. 2005;68 (2):502–510

Lopez-Macia A, Jimenez JC, Royo M, Giralt E, Albericio F. Synthesis and structure determination of Kahalalide F (1, 2). J Am Chem Soc. 2001;123(46):11398- 11401.

Wang B, Waters AL, Valeriote FA, Hamann MT. An efficient and cost-effective approach to kahalalide F N-terminal modifications using a nuisance algal bloom of Bryopsis pennata. Biochim Biophys Acta. 2015;1850:1849–1854

Pardo B, Paz-Ares L, Tabernero J, Ciruelos E, García M, Salazar R, López A, Blanco M, Nieto A, Jimeno J. Phase I clinical and pharmacokinetic study of Kahalalide F administered weekly as a 1-hour infusion to patients with advanced solid tumors. Clin Cancer Res. 2008;14: 1116–1123

Kanagasabapathy S, Samuthirapandian R, Kumaresan M. Preliminary studies for a new antibiotic from the marine mollusc Melo melo (Lightfoot 1786). Asian Pac J Trop Med. 2011;4:310-314.

Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Letters. 2000;486:185-190.

Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. The J Biol Chem. 1996;271:21808-21813.

Sun J, Liu H, Zhou S, Wang X, Fan M, Shen W, Liao Z. A Novel antimicrobial peptide identified from Mytilus coruscus. Acta Hydrobiologica Sinica. 2014;(3):563-570

Qian ZJ, Jung WK, Byun HG, Kim SK. Protective effect of an antioxidative peptide purified from gastrointestinal digest of oyster Crassostrea gigas against Free Radical Induced DNA Damage. Bioresearch Tech. 2008;99:3365-3371

Oh Y, Ahn CB, Nam KH, Kim YK, Yoon NY, Je JY. Amino acid composition, antioxidant and cytoprotective effect of blue mussel (Mytilus edulis) hydrolysate through the inhibition of caspase-3 activation in oxidative stress-mediated endothelial cell injury. Mar Drugs. 2019;17 (2):135.

Yang XR, Qiu YT, Zhao YQ, Chi CF, Wang B. Purification and characterization of antioxidant peptides derived from protein hydrolysate of the marine bivalve mollusk Tergillarca granosa. Mar Drugs. 2019;17 (5):251.

Biggs JS, Watkins M, Puillandre N, Ownby JP, Lopez-Vera E, Christensen S, Moreno KJ, Bernaldez J, Licea-Navarro A, Corneli PS, Olivera BM. Evolution of Conus Peptide Toxins: Analysis of Conus californicus Reeve. Mol Phylogenet Evol. 2010;56(1):1-12.

Schroeder CI, Lewis RJ. ω-Conotoxins GVIA, MVIIA and CVID: SAR and Clinical Potential. Marine Drugs. 2006;4:193-214.

Layer RT, McIntosh JM. Conotoxins: Therapeutic potential and application. Mar Drugs. 2006;4(3):119-142.

Heifets BD, Smith SM, Leong MS. Acute cardiovascular toxicity of low-dose Intrathecal Ziconotide. Pain Med. 2013;14 (11):1807–1809.

Noon K, Furnish T. (412) patient with altered mental status, an intrathecal pump, and an unknown dose of ziconotide. The Journal of Pain. 2016;17(4):S77.

Scott D, Wright C, Angus J. Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol. 2002;451:279-286.

Wright CE, Robertson AD, Whorlow SL, Angus JA. Cardiovascular and autonomic effects of omega-conotoxins MVIIA and CVID in conscious rabbits and isolated tissue assays. Br J Pharmacol. 2000;131: 1325-1336.

Di L. Strategic approaches to optimizing peptide ADME properties. The AAPS J. 2015;17(1):134-143.

Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today. 2015;20(1): 122- 128

Cheung RCF, Ng TB, Wong JH. Marine peptides: Bioactivities and applications. Marine Drugs. 2015;13:4006-4043.

Rocha J, Peixe L, Gomes NCM, Calado R. Cnidarians as a source of new marine bioactive compounds: An overview of the last decade and future steps for bioprospecting. Mar Drugs. 2011;9:1860-1886

Mansson M, Gram L, Larsen TO. Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs. 2011;9:1440-1468.